Primality proof for n = 214824846426985860661:
Take b = 2.
b^(n-1) mod n = 1.
19505309445451 is prime.
b^((n-1)/19505309445451)-1 mod n = 210993610960317807170, which is a unit, inverse 37139972704204312855.
(19505309445451) divides n-1.
(19505309445451)^2 > n.
n is prime by Pocklington's theorem.