Primality proof for n = 2151858718037429125511251:
Take b = 2.
b^(n-1) mod n = 1.
20387630040577 is prime.
b^((n-1)/20387630040577)-1 mod n = 1609459712269279077779375, which is a unit, inverse 72744713369542696959983.
(20387630040577) divides n-1.
(20387630040577)^2 > n.
n is prime by Pocklington's theorem.