Primality proof for n = 216558437:
Take b = 2.
b^(n-1) mod n = 1.
1746439 is prime. b^((n-1)/1746439)-1 mod n = 17781006, which is a unit, inverse 29983791.
(1746439) divides n-1.
(1746439)^2 > n.
n is prime by Pocklington's theorem.