Primality proof for n = 21659270770119316173069236842332604979796116387017648600075645274821611501358515537962695117368903252229601718723941:
Take b = 2.
b^(n-1) mod n = 1.
90050068090664042551646936303486902724615855323314057604193773 is prime.
b^((n-1)/90050068090664042551646936303486902724615855323314057604193773)-1 mod n = 21154878553981196651389597166510161425993053925691337649291307419712136879882277657889536770695842146518191505280130, which is a unit, inverse 10195736119204501266634097526710668441456608532539919042877583015558437932360610327168691170619298681063410965212292.
(90050068090664042551646936303486902724615855323314057604193773) divides n-1.
(90050068090664042551646936303486902724615855323314057604193773)^2 > n.
n is prime by Pocklington's theorem.