Primality proof for n = 21691107791071112804746088983950791:
Take b = 2.
b^(n-1) mod n = 1.
24453091069698428153 is prime.
b^((n-1)/24453091069698428153)-1 mod n = 12897629273018855099775043891234934, which is a unit, inverse 3542555888969238127864350465858182.
(24453091069698428153) divides n-1.
(24453091069698428153)^2 > n.
n is prime by Pocklington's theorem.