Primality proof for n = 217699597736956946353518728155221031177:
Take b = 2.
b^(n-1) mod n = 1.
1401331155935919372480037129584563 is prime.
b^((n-1)/1401331155935919372480037129584563)-1 mod n = 196060430789962465909160655575992298880, which is a unit, inverse 173434842446991541664804758190288115807.
(1401331155935919372480037129584563) divides n-1.
(1401331155935919372480037129584563)^2 > n.
n is prime by Pocklington's theorem.