Primality proof for n = 22009001472962227:
Take b = 2.
b^(n-1) mod n = 1.
128262069029 is prime.
b^((n-1)/128262069029)-1 mod n = 10683752564916910, which is a unit, inverse 390336835632271.
(128262069029) divides n-1.
(128262069029)^2 > n.
n is prime by Pocklington's theorem.