Primality proof for n = 2205934966343040556770938144460047174606142921998789:
Take b = 2.
b^(n-1) mod n = 1.
50619101710669 is prime.
b^((n-1)/50619101710669)-1 mod n = 2073166356068663054640999950154066596022007940860901, which is a unit, inverse 779647177919074501066558549839168576150548002924662.
2270119023421 is prime.
b^((n-1)/2270119023421)-1 mod n = 199799538792766540225374372628292727890653070642439, which is a unit, inverse 1468974928957578001169164672707780957776195249261260.
(2270119023421 * 50619101710669) divides n-1.
(2270119023421 * 50619101710669)^2 > n.
n is prime by Pocklington's theorem.