Primality proof for n = 222374623:
Take b = 2.
b^(n-1) mod n = 1.
37062437 is prime. b^((n-1)/37062437)-1 mod n = 63, which is a unit, inverse 134130725.
(37062437) divides n-1.
(37062437)^2 > n.
n is prime by Pocklington's theorem.