Primality proof for n = 2245631:
Take b = 2.
b^(n-1) mod n = 1.
224563 is prime. b^((n-1)/224563)-1 mod n = 1023, which is a unit, inverse 15366.
(224563) divides n-1.
(224563)^2 > n.
n is prime by Pocklington's theorem.