Primality proof for n = 22561162540501040539:
Take b = 2.
b^(n-1) mod n = 1.
5171003929967 is prime.
b^((n-1)/5171003929967)-1 mod n = 1881923577665948217, which is a unit, inverse 10911148973215549673.
(5171003929967) divides n-1.
(5171003929967)^2 > n.
n is prime by Pocklington's theorem.