Primality proof for n = 225731161:
Take b = 2.
b^(n-1) mod n = 1.
1033 is prime.
b^((n-1)/1033)-1 mod n = 70346502, which is a unit, inverse 68878706.
607 is prime.
b^((n-1)/607)-1 mod n = 119963697, which is a unit, inverse 35345078.
(607 * 1033) divides n-1.
(607 * 1033)^2 > n.
n is prime by Pocklington's theorem.