Primality proof for n = 2261713:
Take b = 2.
b^(n-1) mod n = 1.
47119 is prime. b^((n-1)/47119)-1 mod n = 1290808, which is a unit, inverse 2224341.
(47119) divides n-1.
(47119)^2 > n.
n is prime by Pocklington's theorem.