Primality proof for n = 22645347980446549950250344634517843:
Take b = 2.
b^(n-1) mod n = 1.
297581916939273464475253 is prime.
b^((n-1)/297581916939273464475253)-1 mod n = 12072101161691705496640020199084290, which is a unit, inverse 12728189880118176745830426795818185.
(297581916939273464475253) divides n-1.
(297581916939273464475253)^2 > n.
n is prime by Pocklington's theorem.