Primality proof for n = 2270119023421:
Take b = 2.
b^(n-1) mod n = 1.
33191 is prime.
b^((n-1)/33191)-1 mod n = 2205158532236, which is a unit, inverse 2256184190859.
1669 is prime.
b^((n-1)/1669)-1 mod n = 1203252037393, which is a unit, inverse 1680489189474.
(1669 * 33191) divides n-1.
(1669 * 33191)^2 > n.
n is prime by Pocklington's theorem.