Primality proof for n = 228572385721:
Take b = 2.
b^(n-1) mod n = 1.
272109983 is prime.
b^((n-1)/272109983)-1 mod n = 228249034434, which is a unit, inverse 195783320097.
(272109983) divides n-1.
(272109983)^2 > n.
n is prime by Pocklington's theorem.