Primality proof for n = 228728139988123081237499256083957678977837:
Take b = 2.
b^(n-1) mod n = 1.
250381879990652588256601 is prime.
b^((n-1)/250381879990652588256601)-1 mod n = 205660410087993460753163052014875056903611, which is a unit, inverse 143056203127841678731160089489611361112086.
(250381879990652588256601) divides n-1.
(250381879990652588256601)^2 > n.
n is prime by Pocklington's theorem.