Primality proof for n = 230039351:
Take b = 2.
b^(n-1) mod n = 1.
14699 is prime.
b^((n-1)/14699)-1 mod n = 217125720, which is a unit, inverse 149828515.
313 is prime.
b^((n-1)/313)-1 mod n = 166195264, which is a unit, inverse 78465100.
(313 * 14699) divides n-1.
(313 * 14699)^2 > n.
n is prime by Pocklington's theorem.