Primality proof for n = 23314383343543:
Take b = 2.
b^(n-1) mod n = 1.
228572385721 is prime.
b^((n-1)/228572385721)-1 mod n = 20351814924464, which is a unit, inverse 1293503794781.
(228572385721) divides n-1.
(228572385721)^2 > n.
n is prime by Pocklington's theorem.