Primality proof for n = 2346158371:
Take b = 2.
b^(n-1) mod n = 1.
4909 is prime.
b^((n-1)/4909)-1 mod n = 2318703347, which is a unit, inverse 86414009.
179 is prime.
b^((n-1)/179)-1 mod n = 726196748, which is a unit, inverse 1187969659.
(179 * 4909) divides n-1.
(179 * 4909)^2 > n.
n is prime by Pocklington's theorem.