Primality proof for n = 23538849507889:
Take b = 2.
b^(n-1) mod n = 1.
152083 is prime.
b^((n-1)/152083)-1 mod n = 22146537771771, which is a unit, inverse 12060572001727.
22549 is prime.
b^((n-1)/22549)-1 mod n = 464330107827, which is a unit, inverse 13188785725070.
(22549 * 152083) divides n-1.
(22549 * 152083)^2 > n.
n is prime by Pocklington's theorem.