Primality proof for n = 23658857317:
Take b = 2.
b^(n-1) mod n = 1.
26161 is prime.
b^((n-1)/26161)-1 mod n = 16803971451, which is a unit, inverse 10695012478.
25121 is prime.
b^((n-1)/25121)-1 mod n = 19676504053, which is a unit, inverse 19461089698.
(25121 * 26161) divides n-1.
(25121 * 26161)^2 > n.
n is prime by Pocklington's theorem.