Primality proof for n = 2394768781123004469808382870696186422325158931040989687224220336205960556679:
Take b = 2.
b^(n-1) mod n = 1.
3376384040438327312767543585515740988479041826522993 is prime.
b^((n-1)/3376384040438327312767543585515740988479041826522993)-1 mod n = 1256860618731943942560218756822254479483671425189879317650293553896118971307, which is a unit, inverse 843733241773313172426542565187387319918868400450010263941260839150939963520.
(3376384040438327312767543585515740988479041826522993) divides n-1.
(3376384040438327312767543585515740988479041826522993)^2 > n.
n is prime by Pocklington's theorem.