Primality proof for n = 24004372753289:
Take b = 2.
b^(n-1) mod n = 1.
1418023 is prime.
b^((n-1)/1418023)-1 mod n = 1885917427470, which is a unit, inverse 13701827413197.
124471 is prime.
b^((n-1)/124471)-1 mod n = 16991633004856, which is a unit, inverse 19954874831253.
(124471 * 1418023) divides n-1.
(124471 * 1418023)^2 > n.
n is prime by Pocklington's theorem.