Primality proof for n = 24120413:
Take b = 2.
b^(n-1) mod n = 1.
6030103 is prime. b^((n-1)/6030103)-1 mod n = 15, which is a unit, inverse 20904358.
(6030103) divides n-1.
(6030103)^2 > n.
n is prime by Pocklington's theorem.