Primality proof for n = 24217663:
Take b = 2.
b^(n-1) mod n = 1.
82373 is prime. b^((n-1)/82373)-1 mod n = 14875079, which is a unit, inverse 6374957.
(82373) divides n-1.
(82373)^2 > n.
n is prime by Pocklington's theorem.