Primality proof for n = 24390926906057:
Take b = 2.
b^(n-1) mod n = 1.
7144903 is prime.
b^((n-1)/7144903)-1 mod n = 23390616675106, which is a unit, inverse 7370921774782.
(7144903) divides n-1.
(7144903)^2 > n.
n is prime by Pocklington's theorem.