Primality proof for n = 245621:
Take b = 2.
b^(n-1) mod n = 1.
12281 is prime. b^((n-1)/12281)-1 mod n = 66091, which is a unit, inverse 70857.
(12281) divides n-1.
(12281)^2 > n.
n is prime by Pocklington's theorem.