Primality proof for n = 2493961260309239103759479389479268332988451545120507:
Take b = 2.
b^(n-1) mod n = 1.
7724799505040016989101 is prime.
b^((n-1)/7724799505040016989101)-1 mod n = 319519662324789031995206962933348789358290138186497, which is a unit, inverse 1956250694240882710373999620294000460179980700887910.
8874921343853306041 is prime.
b^((n-1)/8874921343853306041)-1 mod n = 819472459390238887837930581114858036516397011411923, which is a unit, inverse 909911173181723968364313609158077220351892015599484.
(8874921343853306041 * 7724799505040016989101) divides n-1.
(8874921343853306041 * 7724799505040016989101)^2 > n.
n is prime by Pocklington's theorem.