Primality proof for n = 251969987:
Take b = 2.
b^(n-1) mod n = 1.
397429 is prime. b^((n-1)/397429)-1 mod n = 20517413, which is a unit, inverse 91928706.
(397429) divides n-1.
(397429)^2 > n.
n is prime by Pocklington's theorem.