Primality proof for n = 25465723:
Take b = 2.
b^(n-1) mod n = 1.
3499 is prime.
b^((n-1)/3499)-1 mod n = 7997139, which is a unit, inverse 16349280.
1213 is prime.
b^((n-1)/1213)-1 mod n = 22111368, which is a unit, inverse 3191890.
(1213 * 3499) divides n-1.
(1213 * 3499)^2 > n.
n is prime by Pocklington's theorem.