Primality proof for n = 254723693668765069288156859027433499782242697184918145687475956144269:
Take b = 2.
b^(n-1) mod n = 1.
933937079203349671409932360755404077558846659923 is prime.
b^((n-1)/933937079203349671409932360755404077558846659923)-1 mod n = 135057656444299110747409049626492869638551790508053250075914482444977, which is a unit, inverse 185404141376111909089813845301320494768927641596208650395252294795637.
(933937079203349671409932360755404077558846659923) divides n-1.
(933937079203349671409932360755404077558846659923)^2 > n.
n is prime by Pocklington's theorem.