Primality proof for n = 25605588031:
Take b = 2.
b^(n-1) mod n = 1.
8963 is prime.
b^((n-1)/8963)-1 mod n = 17052410024, which is a unit, inverse 14598673255.
787 is prime.
b^((n-1)/787)-1 mod n = 19491561310, which is a unit, inverse 12756704081.
(787 * 8963) divides n-1.
(787 * 8963)^2 > n.
n is prime by Pocklington's theorem.