Primality proof for n = 2582420664331010792443772203:
Take b = 2.
b^(n-1) mod n = 1.
25946288601512170961 is prime.
b^((n-1)/25946288601512170961)-1 mod n = 873286792677208210565765030, which is a unit, inverse 387092091238768611694661757.
(25946288601512170961) divides n-1.
(25946288601512170961)^2 > n.
n is prime by Pocklington's theorem.