Primality proof for n = 2619408491927:
Take b = 2.
b^(n-1) mod n = 1.
124781 is prime.
b^((n-1)/124781)-1 mod n = 724783470365, which is a unit, inverse 128608519514.
307 is prime.
b^((n-1)/307)-1 mod n = 2043496089362, which is a unit, inverse 2555564420813.
(307 * 124781) divides n-1.
(307 * 124781)^2 > n.
n is prime by Pocklington's theorem.