Primality proof for n = 26312496861293:
Take b = 2.
b^(n-1) mod n = 1.
108763483 is prime.
b^((n-1)/108763483)-1 mod n = 14625306561131, which is a unit, inverse 23204593613389.
(108763483) divides n-1.
(108763483)^2 > n.
n is prime by Pocklington's theorem.