Primality proof for n = 26959946667150639794667015087019625940457807714424391721682722368061:
Take b = 2.
b^(n-1) mod n = 1.
50520606258875818707470860153287666700917696099933389351507 is prime.
b^((n-1)/50520606258875818707470860153287666700917696099933389351507)-1 mod n = 15234485764574659475519518639469693083392193569330144316598560593321, which is a unit, inverse 8477602444834504741936850830720541060080598355690493385227106327903.
(50520606258875818707470860153287666700917696099933389351507) divides n-1.
(50520606258875818707470860153287666700917696099933389351507)^2 > n.
n is prime by Pocklington's theorem.