Primality proof for n = 26959946667150639794667015087019630673557916260026308143510066298881:
Take b = 2.
b^(n-1) mod n = 1.
67280421310721 is prime.
b^((n-1)/67280421310721)-1 mod n = 18165785516229879368771440519763515473479679785718022440686914330776, which is a unit, inverse 1597323854483026241456240834039290621439433276748681823608349398425.
6700417 is prime.
b^((n-1)/6700417)-1 mod n = 13991779571000850474005113665994511985563045730848799064907845512935, which is a unit, inverse 8173586430568523921765474083541416488074249066364373920577723458257.
274177 is prime.
b^((n-1)/274177)-1 mod n = 25300313847142175056972148260374543413065353543238721431034063169436, which is a unit, inverse 12594529039863227186089598092998425581028414986937119115821783035488.
65537 is prime.
b^((n-1)/65537)-1 mod n = 24957941516557130161788872494063222800088474928215496942608336386379, which is a unit, inverse 21056122339738091592938703985912319043889110751790116386774968590833.
641 is prime.
b^((n-1)/641)-1 mod n = 3100080387550986075628366279832095199197580242314759948807147781534, which is a unit, inverse 2577817669552745325243123536055703930589523369683820586099884742025.
(641 * 65537 * 274177 * 6700417 * 67280421310721) divides n-1.
(641 * 65537 * 274177 * 6700417 * 67280421310721)^2 > n.
n is prime by Pocklington's theorem.