Primality proof for n = 27093605140967:
Take b = 2.
b^(n-1) mod n = 1.
157427 is prime.
b^((n-1)/157427)-1 mod n = 22383086807723, which is a unit, inverse 21416025351333.
11393 is prime.
b^((n-1)/11393)-1 mod n = 19409880122647, which is a unit, inverse 11155190081724.
(11393 * 157427) divides n-1.
(11393 * 157427)^2 > n.
n is prime by Pocklington's theorem.