Primality proof for n = 27157467587:
Take b = 2.
b^(n-1) mod n = 1.
361223 is prime. b^((n-1)/361223)-1 mod n = 3027890477, which is a unit, inverse 7534683608.
(361223) divides n-1.
(361223)^2 > n.
n is prime by Pocklington's theorem.