Primality proof for n = 272109983:
Take b = 2.
b^(n-1) mod n = 1.
421 is prime.
b^((n-1)/421)-1 mod n = 212077890, which is a unit, inverse 7756922.
233 is prime.
b^((n-1)/233)-1 mod n = 211714061, which is a unit, inverse 163678795.
(233 * 421) divides n-1.
(233 * 421)^2 > n.
n is prime by Pocklington's theorem.