Primality proof for n = 275168401:
Take b = 2.
b^(n-1) mod n = 1.
569 is prime.
b^((n-1)/569)-1 mod n = 130544397, which is a unit, inverse 115721881.
31 is prime.
b^((n-1)/31)-1 mod n = 265464192, which is a unit, inverse 122575355.
(31 * 569) divides n-1.
(31 * 569)^2 > n.
n is prime by Pocklington's theorem.