Primality proof for n = 27727598583240555671506730615016813004130177:
Take b = 2.
b^(n-1) mod n = 1.
211191412011185201 is prime.
b^((n-1)/211191412011185201)-1 mod n = 19924095790367492369925777766308780112537428, which is a unit, inverse 23812860109410688645788439960617982735855492.
665290456380049 is prime.
b^((n-1)/665290456380049)-1 mod n = 6515515389165707205378920840186480007846155, which is a unit, inverse 13901324334781773732522692478592216182554627.
(665290456380049 * 211191412011185201) divides n-1.
(665290456380049 * 211191412011185201)^2 > n.
n is prime by Pocklington's theorem.