Primality proof for n = 27818066278401359:
Take b = 2.
b^(n-1) mod n = 1.
999964351 is prime.
b^((n-1)/999964351)-1 mod n = 7381063508716099, which is a unit, inverse 21925149953329270.
(999964351) divides n-1.
(999964351)^2 > n.
n is prime by Pocklington's theorem.