Primality proof for n = 278486521:
Take b = 2.
b^(n-1) mod n = 1.
10501 is prime.
b^((n-1)/10501)-1 mod n = 131644513, which is a unit, inverse 121741978.
17 is prime.
b^((n-1)/17)-1 mod n = 262216189, which is a unit, inverse 84587057.
(17 * 10501) divides n-1.
(17 * 10501)^2 > n.
n is prime by Pocklington's theorem.