Primality proof for n = 28145939:
Take b = 2.
b^(n-1) mod n = 1.
14072969 is prime. b^((n-1)/14072969)-1 mod n = 3, which is a unit, inverse 9381980.
(14072969) divides n-1.
(14072969)^2 > n.
n is prime by Pocklington's theorem.