Primality proof for n = 2833687:
Take b = 2.
b^(n-1) mod n = 1.
157427 is prime. b^((n-1)/157427)-1 mod n = 262143, which is a unit, inverse 1809922.
(157427) divides n-1.
(157427)^2 > n.
n is prime by Pocklington's theorem.