Primality proof for n = 28452187:
Take b = 2.
b^(n-1) mod n = 1.
359 is prime.
b^((n-1)/359)-1 mod n = 16862324, which is a unit, inverse 3409663.
37 is prime.
b^((n-1)/37)-1 mod n = 25381081, which is a unit, inverse 16860336.
(37 * 359) divides n-1.
(37 * 359)^2 > n.
n is prime by Pocklington's theorem.