Primality proof for n = 28591973599411:
Take b = 2.
b^(n-1) mod n = 1.
163027 is prime.
b^((n-1)/163027)-1 mod n = 21373663873814, which is a unit, inverse 15240216829473.
149899 is prime.
b^((n-1)/149899)-1 mod n = 13865651680762, which is a unit, inverse 26147953429063.
(149899 * 163027) divides n-1.
(149899 * 163027)^2 > n.
n is prime by Pocklington's theorem.