Primality proof for n = 28723789958641:
Take b = 2.
b^(n-1) mod n = 1.
17097494023 is prime.
b^((n-1)/17097494023)-1 mod n = 4906311729342, which is a unit, inverse 24207144520723.
(17097494023) divides n-1.
(17097494023)^2 > n.
n is prime by Pocklington's theorem.